
armlet quick
reference

 var t = 10
 var i = 1
 var s = 0
 while(t != 0) {
 s = s + i
 i = i + 1
 t = t - 1
 }

Our first armlet program

Instruction set
(Instructions controlling the data path)

nop # no operation
mov $L, $A # $L = $A (copy the value of $A to $L)
and $L, $A, $B # $L = bitwise AND of $A and $B
ior $L, $A, $B # $L = bitwise (inclusive) OR of $A and $B
eor $L, $A, $B # $L = bitwise exclusive-OR of $A and $B
not $L, $A # $L = bitwise NOT of $A
add $L, $A, $B # $L = $A + $B
sub $L, $A, $B # $L = $A - $B
neg $L, $A # $L = -$A
lsl $L, $A, $B # $L = $A shifted to the left by $B bits
lsr $L, $A, $B # $L = $A shifted to the right by $B bits
asr $L, $A, $B # $L = $A (arithmetically) shifted to the right by $B bits

mov $L, I # $L = I (copy the immediate data I to $L)
add $L, $A, I # $L = $A + I
sub $L, $A, I # $L = $A - I
and $L, $A, I # $L = bitwise AND of $A and I
ior $L, $A, I # $L = bitwise (inclusive) OR of $A and I
eor $L, $A, I # $L = bitwise exclusive OR of $A and I
lsl $L, $A, I # $L = $A shifted to the left by I bits
lsr $L, $A, I # $L = $A shifted to the right by I bits
asr $L, $A, I # $L = $A (arithmetically) shifted to the right by I bits

loa $L, $A # $L = [contents of memory word at address $A]
sto $L, $A # [contents of memory word at address $L] = $A

trp # trap (break out of execution for debugging)

Instruction set
(Instruction controlling the flow of execution)

cmp $A, $B # compare $A (left) and $B (right)
cmp $A, I # compare $A (left) and I (right)

jmp $A # jump to address $A
beq $A # ... if left == right (in the most recent comparison)
bne $A # ... if left != right
bgt $A # ... if left > right (signed)
blt $A # ... if left < right (signed)
bge $A # ... if left >= right (signed)
ble $A # ... if left <= right (signed)
bab $A # ... if left > right (unsigned)
bbw $A # ... if left < right (unsigned)
bae $A # ... if left >= right (unsigned)
bbe $A # ... if left <= right (unsigned)

jmp I # jump to address I
beq I # ... if left == right (in the most recent comparison)
bne I # ... if left != right
bgt I # ... if left > right (signed)
blt I # ... if left < right (signed)
bge I # ... if left >= right (signed)
ble I # ... if left <= right (signed)
bab I # ... if left > right (unsigned)
bbw I # ... if left < right (unsigned)
bae I # ... if left >= right (unsigned)
bbe I # ... if left <= right (unsigned)

hlt # halt execution

Comparison

Halt

Jump and
branch based
on the results
of the latest
comparison

Jump and
branch based
on the results
of the latest
comparison

